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SOLUTION OF LIMITING PROBLEMS OF EXPANDING FLOWS OF GASEOUS 

SUSPENSIONS 

I. M. Yur'ev UDC 532.529.5 

The equations of equilibrium expanding flows of a gaseous suspension with an 
arbitrary volume concentration of particles are transformed into the equations 
of an expanding ideal gas and, in particular, in the two-dimensional stationary 
case, into the linear Chaplygin equations. 

Studies of limiting motions, for example motions with equal velocities of the soil and 
of the gas expanding into its pores, or equilibrium flows, when not only the velocities but 
also the temperatures are equal, help to elucidate the important qualitative features of 
the flows of dispersed media and sometimes permit obtaining results with satisfactory accu- 
racy. 

The motion of an equilibrium mixture is described, generally speaking, by the system of 
equations for a single-phase, continuous, imperfect-gas medium (see, for ~xample, [i]). The 
perfect-gas equations are obtained from this system only in the case of a low volume concen- 
tration of particles and in the absence of phase transitions, which permits applying the 
analytical apparatus of classical gas dynamics [I, 2]. 

The results of this work follow from the representations of the mechanism of the phe- 
nomena given by S. A. Khristianovich in his research on the properties of dispersed flows 
for the example of nonstationary one-dimensional flows of soil and gas contained in its pores 
[3, 4]. 

We study below motion in a space with interphase heat exchange. For large volume con- 
centrations of particles, we restrict ourselves to expansion flows dp/dt. 

In gas dynamics, an example of an expanding flow is the motion of a gaseous suspension 
in a nozzle. 

The equations of an ideal perfect pseudogas with an arbitrary volume concentration of 
particles, in particular, in the two-dimensional stationary case -- the linear Chaplygin equa- 
tions, are obtained for describing the limiting states of expanding flows of gaseous sus- 
pensions. 
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The distribution of particles is assumed to be uniform, and the motion of the gaseous 
suspension is assumed to be free, i.e., without the transmission of forces via contacts be- 
tween particles. 

The system of equations of motion of gaseous suspensions for an arbitrary volume con- 
centration of particles has the following form: 

D 
. . . . .  ln(1 - -m )p s  + divw = O, (i) 

Dt 
d In p m +  div v = O, (2) 
dt 

Dw 
(1--m)p~-- ---- F, (3) 

Dt 

dv -- grad pm -- F, (4) pm --~--= 

p = RpT, (5) 

d ln(pp-~m 1-~)= • ( •  A ( v - - w )  Dw A c~ DT~ 
dt a S Dt T % Dt 

C~psd DTs 
- -  - -  a ( T ~  - -  T ) ,  

6 Dt 

A =  (1- -  rn) t% ., F = - - p g r a d m + f .  
pm 

(6) 

(7) 

(8) 

The first term on the right side of the second formula of (8) appears due to the change 
in the porosity, while the second term f is expressed by different formulas depending on the 
conditions of the problem, for example, 

~ =  -~--(v--w) ( m < l ) ;  I =  18 ~t (1 - -  m) (v - -  w) ( l - - m ( 1 ) ,  (9) 

where the first formula is the analog of Darcy's law and the second follows from Stokes' law 
[3, 4]. The coefficient k has the dimensions of permeability and is on the order of O(da). 

Equations (3) and (6) are valid at the interior points of the flow region, since at 
the boundary the action of the wall must also be taken into account. Equation (6), proposed 
by S. A. Khristianovich in [3, 4] for the case of a one-dimensional motion with a = 0, is 
the transformed equation of balance of the energy of the gaseous phase: 

( dv c :dT~ (i0) pm v - - +  = _ F w _ d i v p m v _ ( l _ m ) p s C  s DT, 
, dt ~ dt ) Dt 

and is obtained by subtracting from (i0) the scalar product of Eq. (4) with v and using the 
formula pmdivv=divpmv--vgradpm and Eqs. (3), (4), and (5). The classical formula p/p• 
const follows from Eq. (6) in the limits m ~ i, A § 0. If, on the other hand, for 1 -- m << 1 
the quantity A is not small because p << Ps, then in the limit, setting m = 1 on the left 
side of Eq. (6), we obtain an equation for a gaseous suspension with negligibly small volume 
concentration, but significant mass concentration of particles. 

The motion of the medium will be close to equilibrium for sufficiently small particles, 
when d = 0. Then, in the limit it follows from 

- ~ t  d lnT,. In (pp-~'ml-~) = --e dt 

since according to (7) and (9) v=w, Ts=T 
Eqs. (i), (8), and (6) that 

A--  ( l - - r e )  p, = const; 
pm 

where E = ACs/C v w i t h  T s = T and r w i t h  

(ll) 

~ = 0 ,  A =/= O. 

The case c~O corresponds to motion which is at equilibrium with respect to velocity, 
but with a "frozen" particle temperature T s = const, as, for example, the motion of grains 
of soil, where heat exchange with the gas expanding in its pores is negligibly small. 

It follows from Eqs. (4), (5), and (6) that the specific entropy of the gaseous phase 
s = cvln(p/9 ~) changes according to the equation 

22 



ds = R d ln m +  v - - w  F Acs DT8 
dt dt pm T T Dt (12) 

and for this reason the change in the specific entropy of the equilibrium mixture s~ is equal 
to 

ds 1 1 (_____' ds cs dT ~ = R __d .ln m. 
dt I + A  ~dt  + A  (13) 

T dt ] 1 + A dt 

The final result for dsl/dt is also valid with r T s = const. Based on (ii), dm = 
--Am2D (p/ps). 

Therefore, for a mixture described by the given system of equations, the entropy of 
equilibrium and close to equilibrium flows increases only with dp/dt < 0. 

As S. A. Khristianovich showed, for compression flows dp/dt > 0 the equation of energy 
of the gaseous phase differs fundamentally from Eqs. (i0) or (6) [4]. This difference is, 
in particular, associated with the necessity of taking into account the additional work per- 
formed by the external forces-~Dm/Dt as a result of the change in m accompanying compres- 
sion. 

We shall restrict ourselves to the system of equations (1)-(8), i.e., to flows for which 
dp/dt < O. We note that for i-- m << i, p << Ps and any A, from system (1)-(8) we can also 
obtain approximate solutions for flows with dp/dt > 0, because the motion of such a mixture 
will be mathematically close to the limit A ~= 0 with m + l, P/Ps § 0, for which the equations 
of the energy of the gaseous phases with dp/dt < 0 and dp/dt > 0 coincide [4]. 

f 

After adding Eqs. (3) and (4) with v=w and from (ii) we obtain 

grad pm Ov 1 
= - -  + - ~ -  grad v~ - -  v • rot v, ( 1 4 )  

(1 + A) pm Ot 
~+_.__8 

pm/(pm) 1+8 = eonst. 

In the variables p~ = pm, Px = (i + A)pm we arrive at the equations of an ideal adiabatic 

flow of gas with the adiabatic index xl and the gas constant R~: 

•  , Rx R co(1 + e )  
= - ~ ,  cv, = (15) • l + e  1 + A  I + A  

The parameters introduced are physically well founded. A unit of mass of the mixture 
consists of a fraction i/(i + A) of gas and a fraction A/(Z + A) of particles. The heat 
capacity of the mixture Cv~ must be equal to the sum of Cv/(l + A) for the gas and Acs/(l + 
A) for the particles, which also follows because of e = Acs/c v from Eq. (15). The fact that 
Cpx differs from Cv, is attributable to the presence of the gas phase. In the limit A * ~, 
i.e., as the gas vanishes (m + 0), Cpx § Cvx § Cs. In the case of particles with a "frozen" 
temperature (eE0), the values of Cvx and Cpt are determined only by the i/(i + A) part due 
to the gas phase. 

We shall follow based on the formulas and equations of gas dynamics the relationship 
between the different parameters of the flows of pseudogas, i.e., an equilibrium mixture and 
its gas phase. Based on (14) with rotv=0 we obtain the Cauchy integral 

dpl + l_[_v~ O~ 
Pl 2 + - ~  = z(t);  v = grad% (16)  

For s t a t i o n a r y  f l ows  O~/Ot~_O, %(t)= const. Then f rom (14) and (16) ,  k e e p i n g  in  mind ( in  
view of dp/dt < 0) the formality of the retardation parameters, we obtain 

Pl/Plo = (Pl/Plo) ~', (17) 

:+.___~ 1 

Plo 2 (• + e) ag 2 a~o ] 

or in a different form 
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Using 

9.---L = ( 1 

a~ = up~p, a~ = • 

r +.....s i 

2 (• + ~) a~ 2 a~. " 

and Eq. (17), we find 

a' = ~,~;  a ~ = ao ~ - • (• - i ) (1  + A) : ;  a~ = a~o - -  ~'~ - -  1 v'; 
2 (• + e) 2 

a~, ( 1 +  u+li-L-8 ) ?a~*; 

• + 8 ) ( 1  -f- A ) ~ I ;  ?___ 1 + A 
• + ~ 1 + A/h~ + 2el•215 + 1) 

(18) 

(19) 

Instead of v=, a~, a,~ we can take the values of these quantities at any other point in 
the flow region. If i -- m << i, then p: ~ p, p, ~ (i + A)~. Equations (17)-(19) then coin- 
cide with those obtained previously in the study of motions in application to nozzles (see~ 
for example, [5]). 

The magnitude of the volume concentration of particles l-m, based on (ii), (18), and 
(19), can be determined from the formula 

I+_...L 1 
1 - - m  = (' l_--?~!h'] ~-' { 1--Z] /h]  ~u'-~ 

l - - r e ,  t 1-- ?X~/h') = \ i ----- ~ I )  ' (20) 

where 

~,=__v_v., ~:= v _ _ - - | / ( 1  + ~ i s  ]?X; (2I) 
a, al, l / \  ~ + 1 / 

• - -  1 h~ 2 a~ o 

Mach's number of the gas phase M = v/a and of the pseudogas MI = v/at are related to 1 
and X: by the formulas 

2 (• + *) ;~ 
2 ( • 2 1 5 2 1 5  *) ' (22) 

M ~ =  2 _  ~ M ~ - - ~ M '  
•  1 1 - - ~ / h ~  ' 

Because the equa t ions  governing the flows of the pseudogas and of the  e q u i l i b r i u m  mixture  
c o i n c i d e ,  t h e i r  c h a r a c t e r i s t i c s  and l i m i t i n g  l i n e s  w i l l  be the same. 

According to (19), the v e l o c i t y  of sound a~ in  the pseudogas,  i . e . ,  the v e l o c i t y  of 
p ropaga t ion  of weak d i s t u r b a n c e s  in  the e q u i l i b r i u m  mix tu re ,  i s  l e s s  than the  v e l o c i t y  of  
sound in  the gas phase.  The h ighe r  the c o n c e n t r a t i o n  of p a r t i c l e s  1-m~ the longer  w i l l  be 
the path of the weak disturbances propagating through the gas. The critical velocity of the 

= at* is reached with a subsonic velocity of the gas %=%.=[(I+2~/(x+I))?] - I / 2 , ~ _ _  pseudogas V 

and therefore, Ii > I. 

Flows of high-concentration mixtures with g-=O and ~ = Acs/c v are considerably different. 
Thus, for example, from the relations for Vmax(a = 0) 

2 = v 2  2 ( •  a% 
•  1)(1 + A) 

-- ~ I +  -~ + 
y x ( •  1)(1 + A) 

2 (n + ~) [2 (• + ~) + ~ (• - -  1) (1 + A)] 
•215  1)(1 + A)t i (z  + e) + ~ ( n - -  1) (1 + A) M~I 
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we conclude that Vmax and a, in the case r will be close to v~ at sufficiently large value 
of A. In other words, the smaller the mass of the gas compared to the mass of the particles, 
evidently, the less it can expand under the conditions v=w and change the motion of the mix- 
ture. 

The flow of a pseudogas with sufficiently large values of A will be hypersonic, i.e., 
~= is close to %~max = h, and the velocity of sound a~ ~. a=/A ~12 is small. In the case 

= Acs/Cv, on the other hand, with A of the order of 0(i0 2) and higher we already obtain 
values for Vma x close to the mathematical limit differing from v= (A § co): 

2 v~ + 2csa~ 2 2c8 
Vm~,,-." •215 1) cv ; ~m.~-)" 1 + 

-- u ( •  1) c~ 

~max 2Cs 
- -  = ~ - - ) -  1 + 

Here an amount of gas which is small compared to the mass of the particles changes by a 
finite amount the velocity of the equilibrium mixture due to the transfer of thermal energy 
by the particles to the gas. 

We note that actually the gas escapes from the pores in the soil and in order for the 
equilibrium model to correspond qualitatively to reality as the volume concentration of 
particles increases, the sizes of the particles must be substantially decreased. 

To describe the motion of an equilibrium mixture, both the equation 

2 2 
1 a~ (Pxx + 1 -- a~ ] qoyy + 1 q)~ 2qoxq)y 2(Pxq% 2q)y(Pz 

which follows from the equation of continuity (2) using the formula dlno~/dv ~ = ~/2a a ob- 
tained from (17) and (19), and Chaplygin's system of equations-which is simply derived 
for two-dimensional motions from the conditions of total differentials 

d x -  cosO d~p-- P ly~  sinOd~, dy = sinO dq~ + PlO cosfld~b: (23) 
v piv v p~v 

where 

are valid. We have: 

am = / ~ .  ar a___C _ { ~  ar 
O0 Oa ' Oa O0 ' (24) 

(Y ~--- 

p (x) P' (x) ' 
;% 

V P' (~,) Q' O0 d~, 
P (~) Q (~) 

)/ ;R= ~ / 1 - - ( 1  + 2el(• +. 1))?~ z V/" 1--~] 
(1 - - V X ' / h ~ )  " + ~ / { ~ - ~ )  = (~ - X~/h~- h~ ' 

j" v f l - - ( l + 2 8 / ( •  ~ d)~- t. / 1--;~2 2 d)h 
1 - -  T ~ , ~ / h  ~ ~, 1 - -  ) ~ l / h l  %1 

~,,  1 

(25) 

According to (25) and (23), the solution EE0 of Eq. (24) with ~ (a, 0) given beforehand 
corresponds, because of •215 h1=h, in the x,y plane to the reduced A-invariant velocity 
field of the pseudogas %10. For E = Acs/cv Eqs. (24) depend on A via h~ and to the solution 
~(G 0} there corresponds in the x, y plane its own field %~0 for each A. 

NOTATION 

t, time; v and w, p and Ps, T and Ts, d/dt and D/Dr, respectively, velocity, density, 
temperature, and derivatives for the gas and the particles; p, pressure of the gas; R, gas 
constant; a, velocity of sound in the gas; a, coefficient of heat transfer from the particles 
to the gas; m and F, volume content of gas and the force exerted by the gas on the particles 
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per unit volume of the mixture; i=F~pgradm: d, particle diameter; Cv, Cp, and Cs, heat 
capacities of the gas and of the particles; p, coefficient of viscosity of the gas, x~cp/c~. 
k ~=~•215 A, ratio of the reduced densities of the particles and of the gas; e = Acs/c p 
with T s = T and e~O with ~=0, A~0; X(0 , an arbitrary function of t; 8, Y, constants ex- 
pressed in terms of A, ~, ~ s, entropy of the gas; M and %, Mach and Khristianovich numbers; 
%,, subsonic velocity of the gas, corresponding to the critical velocity of the pseudogas; 

and ~, velocity potential and the stream function; 0, angle of inclination of the velocity 
vector to the x axis; P = i/~, Q = 0o/01%; ~ and o, coefficient and independent variable of 
the system of Chaplygin's equations. Indices: i, pseudogas, i.e., the equilibrium mixture; 
~, quantities in the unperturbed flow at infinity; 0, values at the point of stagnation of 
the flow; *, critical values of the quantities. 
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STATIONARY EXCHANGE BETWEEN AN INFILTRATED GRANULAR BED 

AND A BODY IMMERSED IN IT 

Yu. A. Buevich and E. B. Perminov UDC 532.546:536.242 

Stationary heat and mass outflow from a body in an infiltrated granular bed is 
studied taking into account the effect of the high-porosity zone near the surface 
of the body. 

Problems concerning the stationary transfer of heat or mass from bodies placed in a 
filtrational flow were first posed and studied for bodies with a simple shape in [i, 2]. In 
[3] this formulation was extended to nonstationary transfer processes with absorption in the 
volume of the granular bed. Here the presence of a thin zone, in which the transfer coef- 
ficients differ considerably from their effective values outside it, on the surface of the 
immersed body was completely ignored. This is completely justified, if the characteristic 
size of the body is much greater than the structural size of the bed (diameter of the parti- 
cles), and Peclet's number, constructed based on the size of the body, the filtration 
velocity, and the effective transfer coefficient, is not too large (see, for example, the 
experiments in [4]). When any of these conditions is violated, however, the existence of 
the indicated zone significantly changes the observed heat or mass flows compared to those 
determined theoretically neglecting this zone. 

The idea of a layer of high thermal resistance near the surface of a body has been in- 
troduced repeatedly in different semiempirical variants of the theory and has been discussed 
in connection with the problem of external heat transfer in fluidized systems (see the review 
in [5, 6]). In application to exchange between bodies and filtration flows in stationary 
granular fills, it was recently used in [7, 8], where the zone near the wall was viewed as 
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